Core modern
engineering

Traditional done well Work as a team

Adaptive engineering

Leverage
capabilities

Eliminate debt and
change the rules

Take advantage of being awesome

Useful process

Matrixed Single- Retrospectives Iterative team Learn from Learn from
pseudo-teams <] assignment # & with outcomes improvement local cmm'ty everyone innovation
teams ’ ’
\ U 1 \
All work visible Shared task T-shaped Collective = No new bugs Process M-shaped
on one board responsibility - people ownership in new code experiments people
- - Dt \ \
] rd
v Ld
Ad-hoc Team leads Code review Pairing on Work together Work together Work Bugs decrease Full-product Radical
@ helping - hardproblems =~ - T T T T T T T T T T oy gy T T T T T ¢ to learn — @ for together for over time specialization collaboration
~o R productivity discipline S \
' -
Formal Code preview Sit together __;__,__..—-—- Understand Don't repeat Reflective Improving Clean code - #BugsZero YAGNI and Code
training ° N === and optimize yourself design levels of proof simplest thing whispering
S systems \\
- =)
Pattern- e mmmm === =1 Team Local Read by Test units Legacy code = Pay down Evolutionary Test-driven
oriented e agreement/ . - == "7 7 '.'transform- Refactoring / under test ‘technical debt Design design
design charter based naming is a
refactoring process L, /
Cowboy Big design up \‘ Just Smell-based Iterated Done Learning / Rapid coding Simultaneous Feature Universal
© coding front architecture predictive predictive Definition Proving inner loop (R- ° Phases ..—--'_'__.' isolation CQRS
up front design design , Distinction G-R)
. / ‘
Quality Developer Automated N Test as spec Session-based *_ Automated Automated Continuous Continuous
© Assurance Checking BEE R E R R developer __lg manual testing “# deploy rollback delivery deployment
testing (] / ’r verification V
1
Stasis Centralized Post-mortems \ Automated / Automated /Verify Hypothesis Testing in Business
improvement ° build deploy ,‘ o examples stories production metric focus
verification ’ (ATDD)
l ’
! ’
Manual build Automated Decompose] Stories Story 2 Experience Whole team Lean startup /
and package ° package work vertically] - © clustering 4 focus business hypothesis-
(by value) ¢ A ’ ’ innovation driven
' A . development
] 1 =
Build for Product Small specs Milestones] 1 Iterative Rolling-wave Predictable, Single piece
myself requirements and iterative [] [© planning © planning smooth flow flow
specs I]
] v
r y
Build slack in Limit WIP to ~ Track progress Relative based Reliable long-
eSS emssmassssz=z:= uncover Lf—0 against plan estimation range
problems / planning
Death Waterfall R e Do things in Limit work to Use data to Reliable short- Show Legend
© mmarches © nilestones T, S S SS eSS s s s e s e = = === W terations estimated determine term @ == Check your work (TDD, Exploratry Testing)
N N . [) s Write good code (Refactoring, Design, Recovering legacy code)
Capacty) gapacity CelptTents () s Ship at will (Continuous Integration, Continuous Deployment, Dev Ops)
=] Know what to build (Stories, Vertical Decomposition, Planning)
Apply pull Continuous- / () = Discipline and learning (Pairing, Mobbing)
systems and form planning O m— Improve.as aTeam (Tearn‘s, Retrospectives)
queues () s Not hurried (Velocity, Planning to Capacity)
v Al
== Doing A is nearly required to do B
» = » Doing A helps a lot when doing B

(D) er |

. print (PDF): http://bitly/AgileEngineeringStagesPdf. Version 0.9.0. Copyright © Arlo Belshee, 2014. This work is licensed under a Creative Commons Attribution 3.0 Unported License.

View: http://bitly, contribute: https

http://bit.ly/AgileEngineeringStages
https://github.com/arlobelshee/AgileEngineeringFluency
http://bit.ly/AgileEngineeringStagesPdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

