
View: http://bit.ly/AgileEngineeringStages, contribute: https://github.com/arlobelshee/AgileEngineeringFluency, print ﴾PDF﴿: http://bit.ly/AgileEngineeringStagesPdf. Version 0.9.0. Copyright © Arlo Belshee, 2014. This work is licensed under a Creative Commons Attribution 3.0 Unported License. 

Traditional done well Work as a team Core modern
engineering

Adaptive engineering Leverage
capabilities

Eliminate debt and
change the rules

Take advantage of being awesome

Matrixed
pseudo‐teams

Ad‐hoc
helping

Cowboy
coding

Quality
Assurance

Stasis

Manual build
and package

Build for
myself

Death
marches

Team leads

Big design up
front

Developer
Checking

Centralized
improvement

Automated
package

Product
requirements

Waterfall
milestones

Code review

Formal
training

Pattern‐
oriented
design

Post‐mortems

Build slack in

Pairing on
hard problems

Code preview

Just
architecture
up front

Small specs

Smell‐based
predictive
design

Iterated
predictive
design

Milestones
and iterative
specs

Single‐
assignment
teams

All work visible
on one board

Sit together

Team
agreement /
charter

Retrospectives
with outcomes

Shared task
responsibility

Understand
and optimize
systems

Local
transform‐
based
refactoring

Automated
developer
testing

Decompose
work vertically
﴾by value﴿

Apply pull
systems and
queues

Work together
to learn

Automated
build
verification

Limit WIP to
uncover
problems

Iterative team
improvement

T‐shaped
people

Don't repeat
yourself

Read by
Refactoring /
naming is a
process

Test as spec

Collective
ownership

Done
Definition

Learn from
local cmm'ty

Work together
for
productivity

Code in units

Do things in
iterations

Work
together for
discipline

Test units

Stories

No new bugs
in new code

Reflective
design

Track progress
against plan

Learn from
everyone

Process
experiments

Learning /
Proving
Distinction

Automated
deploy

Story
clustering

Iterative
planning

Relative based
estimation

Limit work to
estimated
capacity

Continuous‐
form planning

Session‐based
manual testing

Rolling‐wave
planning

Bugs decrease
over time

Improving
levels of proof

Legacy code
under test

Rapid coding
inner loop ﴾R‐
G‐R﴿

Automated
deploy
verification

Verify
examples
﴾ATDD﴿

Use data to
determine
capacity

Pay down
technical debt

Simultaneous
Phases

Clean code

Reliable short‐
term
commitments

M‐shaped
people

Evolutionary
Design

Feature
isolation

Automated
rollback

Hypothesis
stories

Experience
focus

Reliable long‐
range
planning

Full‐product
specialization

#BugsZero

Universal
CQRS

Whole team
business
innovation

Predictable,
smooth flow

YAGNI and
simplest thing

Continuous
delivery

Testing in
production

Single piece
flow

Useful process
innovation

Radical
collaboration

Test‐driven
design

Continuous
deployment

Business
metric focus

Code
whispering

Lean startup /
hypothesis‐
driven
development

Legend
  Check your work ﴾TDD, Exploratory Testing﴿

  Write good code ﴾Refactoring, Design, Recovering legacy code﴿

  Ship at will ﴾Continuous Integration, Continuous Deployment, Dev Ops﴿

  Know what to build ﴾Stories, Vertical Decomposition, Planning﴿

  Discipline and learning ﴾Pairing, Mobbing﴿

  Improve as a Team ﴾Teams, Retrospectives﴿

  Not hurried ﴾Velocity, Planning to Capacity﴿
All

 
  Doing A is nearly required to do B

 
  Doing A helps a lot when doing B

Show

http://bit.ly/AgileEngineeringStages
https://github.com/arlobelshee/AgileEngineeringFluency
http://bit.ly/AgileEngineeringStagesPdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

